你的浏览器版本过低,可能导致网站不能正常访问!为了您能正常使用网站功能,请使用这些浏览器。
chrome
Firefox
当前位置:易车> 理想L6> 理想L6方案> 摘要详情

理想L6无论是用地平线方案

理想L6无论是用地平线方案

摘要来自:《理想智驾副总裁郎咸朋:城市NOA使用比例高于高速瞄准第一》

【易车摘要频道】下列精选内容摘自于《理想智驾副总裁郎咸朋:城市NOA使用比例高于高速瞄准第一》的片段:

詹锟:目前在整个智驾团队,我们的PD、RD和交付这三者同步进行,我们是交付一代、研发一代、预研一代,这是我们为什么能一直紧跟目前智驾最新技术方案的原因,我们有比较好的阶梯式研发流程。

我们在做无图NOA研发的时候,其实端到端已经开始预研。并不是等无图NOA做完,再慢慢的切换到端到端架构研发中,其实我们前面就有储备,所以这是我们为什么会速度比较快的原因。如果大家觉得牺牲了效率,其实是因为没有找到提效的方法,我们逐渐已经找到了通过自动化测试、世界模型高效验证模型的方法,所以我们才能兼顾速度和质量。

Q2:现阶段理想智驾研发架构中分为算法研发和量产研发,分别对应着不同的小组,小组对应的是端到端不同模块。随着未来算法的迭代和成本的优化,未来的组织架构是否会进行调整?朝哪些方向来做调整?这个过程中有遇到哪些难题?

郎咸朋:在整体战略规划和业务战略里,我们对于业务组织有清晰的布局。组织根据业务变化,业务的目标和迭代则根据战略调整,这就是我们的BLM流程(业务领导力模型),我们原来叫LSA流程(理想汽车战略分析法)。大家可能对外感知到的是产品、组织的迭代,但实际上背后影射的是我们战略和业务的迭代和变化。

我们的组织变化要追溯到去年或者更早。我们把智能驾驶作为公司战略之后,业务和组织才开始发生迭代和变化。在去年秋季的雁栖湖战略会,我们首次明确提出PD和RD都非常重要,但是其实在那之前PD、RD已经有了,只是在战略会上,进一步明确了将智能驾驶和RD都作为公司级战略展开,所以业务发生了变化。接下来组织会不会发生变化,要看跟业务是否有关联。

Q3:目前所有的车企能够量产车型都是L2级辅助驾驶,理想汽车端到端+VLM怎么保证保证智驾的安全?

郎咸朋:从流程上来讲,内部主要研发流程分为产品交付研发流程以及智能AI的研发流程,两个流程相互配合。

▲理想汽车智驾发展路径

端到端+VLM这套技术系统在一个月的测试过程中,虽然开启城市NOA功能始终是通过拨两次方向盘杆,实现从A点到B点的智能驾驶,但是模型迭代的能力却在不断提升。在模型迭代的时候,整个功能跟原来完全一样,所以这个功能之前做的测试仍然有效。对于这个能力的表现,我们用生成和重建的方式做模型的泛化测试和检验,比实车在全中国驾驶测试好得多。这是我们在 AI 时代到来之后,对于产品研发的深度思考,从而带来的研发变化。

安全另外一层含义就是:怎么能在产品交付之前,做更多更有效的测试。如果用实车做测试,一方面是成本,另一方面是是测试效果可能达不到交付有监督自动驾驶的程度,特别是当模型迭代比较迅速的时候。

我们现在用diffusion transformer技术,再加上3DGS技术,能够把曾经遇到过错题以及遇到过的场景,举一反三地形成模拟题,实现不断地测试模型能力,不断地优化各个城市表现。

我们在每一个维度上都有非常严格的打分,比如安全、法律法规等维度。如果不安全、不合规,模型就不能交付给用户。现在在千人团内测阶段,还没有到量产阶段,所以在安全、合规方面的要求会更加严格,确保我们的产品是一个安全可靠的产品。

詹锟:我从技术角度来说,我们有安全兜底模块,甚至有些东西我们会保证它有绝对的下限。以前写了很多规则应对不同的场景,但是现在只需要写下限的规则,上限全靠端的端 、VLM去捕捉,甚至有些防御性驾驶,VLM都可以提前告诉系统,比如丁字路口、坑洼小路等,这些都在一定程度上提升了系统安全性。无论是数据还是算法,都是在把安全性往上提升。并不是大家说的那样,用端到端了安全就差了,这是针对设计不完善的一种想法。

另外,AEB/AES 其实是在最极端的情况下,最兜底的一种保证绝对安全的方式。这就是用算法、冗余一起来解决安全问题。

Q4:现在从生成到输出,对于传感器包括数据需要有一些质量监测,这个过程中如果出现恶意攻击,甚至说出现各种故障,这种情况理想汽车怎么解决这数据安全的问题?

詹锟:面对数据被污染或者传感器遭受恶意攻击,以及对神经网络进行对抗性破坏,我们已经将这种情况涵盖到整个网络训练过程中。

模型训练并不是针对单一的传感器,比如一个传感器损坏,我们能够通过BEV解决。即使在雨天某个传感器脏污的很厉害,我们依然能稳健驾驶,同时能给用户对应提醒,会告诉你找个安全的地方停车,不会让系统直接失效。

因为有Radar、Lidar等多个传感器,各个传感器在不同环境下能冗余互补,单一的攻击很难起效,这就是为什么很难有单一的攻击策略能让智驾系统失效,因为在技术上做了很多防护。

Q5:理想汽车怎么衡量技术发展和销售规模平衡问题?

郎咸朋:理想L系列外观比较相似,外界也说是在套娃,但是这让我们有个最大的优势。传感器布局和传感器型号完全一致,所以理想L系列的数据可以完全复用,这个是我们比其他企业想的更长远的,所以说大家觉得我们套娃了,实际上对自动驾驶的研发非常有好处。

我认为技术发展和销售规模平衡并不矛盾,最近两个月我们的AD Max车型销量每个月保持10%以上的提升,30万元以上车型AD Max销量占比达到70%,部分车型部分地域AD Max占比达到90%以上,这就是我们最近这几个月技术发展带来的变化。如果技术没有影响销售的话,可能是技术落地没有做好,没有真正解决用户需求。之前行业普遍做轻图和有图方案的时候,其实也在做一些功能,但是一定没有端到端的使用效果好。我觉得还是因为到了端到端这个时代,大家对这个产品的效果有了更好的体验之后,用户就会买单。

Q6:智能驾驶的技术升级是否能带来销量提升?

郎咸朋:销售有几个非常重要的漏斗。第一个是品牌,只有用户认可品牌后才会比较智驾、电池、续航等。如果说一开始品牌就不在老百姓的选择范围内,那可能做什么都跟销量没有关系。

Q7:现在端到端在不同城市的表现不一样,我们会针对不同城市来做不同模型吗?还是说会在一个模型上不断地去调优?

詹锟:首先,模型在不同城市有不同表现,这并不代表我们要对不同城市下发不同模型,让模型获得不一样的错题。而是说在世界模型的评测体系下,能够精准地知道这个模型在不同城市是什么表现,便于我们对其做有针对性的分析。

比如在过去的Case里,杭州和广州偏弱,那么对应补足杭州、广州的一些特定场景,加入训练数据中,放到模型中,让模型有全面的提升,所以模型迭代的过程并不是盲目的。如果我们不知道产品在不同城市的表现,我们就会盲目地寻找全国各地的数据,最后实车体验时用户发现杭州还是不行。这样的结果就是迭代效率非常低,训练数据量增加并没有效果,这就是大家都在说的大模型需要高质量数据。有精准的评测才能提高质量,而不是盲目增加数据量。

不同城市不同模型的效果其实是我们非常好的一个特点,能知道很细节的评测维度,不同模型我们有很多维度。在不同城市,还能知道它更细分的情况,让我们更有针对性。比如是不是因为广州的高架桥特别复杂,是不是杭州的可变车道特别复杂才导致端到端的表现不如其他城市,我们是通过这种方式迭代我们的智能驾驶。最终,我们肯定最后会把一个在全国都非常均衡的智能驾驶推送给用户。

Q8:One Model模型怎么优化?只能靠优质数据吗?系统本身是否会有调整?

詹锟:我们现在用数据大幅训练模型。微博上有人总结我们三个版号的含义。第一个版号是数据,1表示100 万量级的clips;2表示200万的clips。第二个版本号是模型结构。所以优化不只是依靠数据,模型结构也很重要,里面有各种细分类型,比如Cross Attention、Self Attention,我们在这方面会做各种各样的设计和实验,所以第二个版号有各种变化。训练策略也会发生变化,模型训练一遍就结束,还是训练一遍以后把重点那点挑出来,再重新训练一遍?还是先训练一部分,再做精选数据的训练。这些都是在大模型训练过程中,我们逐渐积累的经验,肯定不是仅用数据来迭代。

Q9:大家都在探索自动驾驶,没有一个共识方案,所以理想端到端+VLM进入市场的同时,还会不会有其他探索?关于智能驾驶的短期目标,或者最终目标是怎么样?

詹锟:第一个事实是,大家都在研发阶段、尝试阶段,我们之所以敢把目前的版本推送给用户,是因为我们觉得可以类比CNN深度学习网络时期,当时因为一个竞赛,CNN的性能优化了10%左右,性能和安全体验得到了大幅提升。

第二个事实是,在这个过程当中,不同数据、不同的模型结构、不同的训练方法,对模型的迭代都有帮助。这其实是各家都在做的一个关键,解决数据和训练算力的基础问题之后,我相信我们,包括特斯拉都能成功炼丹。但是炼丹第一步就是得有原材料,当原材料得到解决,炼丹的比例调整好,这个丹的作用才大。

▲理想端到端+VLM综合MPI(平均接管里程)

类似于以前炼火药,按照一硝二磺三木炭的比例来,火药的威力就大,如果1:1:1做出来的就是“呲花”,这就是各家在迭代过程当中的一些技术诀窍。我们和用户共同成长,所以我们也需要知道每一套模型实际的表现如何,我们内部有自己的测试,如果表现不好就会内部消化,这种模型就不让去用户使用,但是每当模型有迭代、有提升的时候,我们都会拿给用户去进行测试、验证,这是我们研发过程当中的一些迭代。

关于下一代方案,不知道大家有没有看上周智元的发布会,智元展示了G1到G5的具身智能过程。其实我们内部也有自动驾驶整个研发过程的阶段,我认为在现阶段,无论是对于理想汽车来说,还是对于特斯拉来说,其实都是在向双系统方向发展。

所以端到端肯定是一个非常好的阶段,我们认为已经达到了L3。我们想进一步向L4发展,其实就是需要端到端+VLM双系统,我们认为这是面向L4的一个终局方案。那再往后,L4不是终局的话,我们还有L5,像智元发布的G5一样,我们肯定还会有一体化的、超大规模的统一模型,像GPT-4o模型。未来,肯定要把两个模型合在一起,实现手脑完全结合的大模型方案,这是我们之后要尝试,要探索的东西。

Q10:目前,理想AD Max由两颗OrinX来支撑现在测试的能力开发,端到端方案对车端算力的要求是什么样的?是更高还是更低?那么未来随着上车端到端会不会变得更加强大?那这究竟是个什么样的关系?能不能解读一下?

詹锟:各家在使用算法的时候,都会跟自己的硬件做匹配,无论是用地平线方案,还是Orin方案。双OrinX可以完美适配我们的双系统方案,如果要给出一个固定的上限,不是很好直接预测或配置。但是我们可以知道,随着算力增加,整个能力是一个非常线性的增加,包括特斯拉也证明了12.5版本比12.3提升了五倍,这也完美符合这种大模型的Scaling Law。

对我们来说,到Thor阶段我们肯定会有一个更大规模数据量训练的端到端大模型,效果会进一步提升。我们可以看到它的趋势,我们会基于芯片对它进行相关算法的定制化调整;同时模型规模越来越大,最后产出的端到端效果会越来越好。

另外,其实也可以看到特斯拉现在正在宣传2026年要做一个AI 5的芯片,大概有3, 000到4, 000TOPS的水平,这个阶段是他在做Robotaxi的一个想法。我们也在持续关注高算力的车端芯片的性能。

郎咸朋:我补充一点,Thor芯片上车后,因为它的算力比现在OrinX又大了很多,那么我们会在Thor上更多地发展我们系统化VLM的模型能力。端到端模型我们认为是比较吃算力的,但是它使用算力的上限比VLM少很多,而且它有一定的上限,要1,000万clips,训练这样一个模型所需要的参数量非常大。所以在向L4发展过程中,整个系统需要让它具备更好地应对未知场景的能力,而未知场景能力的提升,需要提升的是系统2,就是VLM的模型能力,所以我们现在22 亿的产出量,将来可能再去扩大。

Q11:端到端方案对算力要求的下限最低到多少?

CopyRight © 2000-2025 BitAuto,All Rights Reserved. 版权所有 北京易车信息科技有限公司    购车咨询:4000-168-168 (周一至周日 9:00 – 21:00) 法定假日除外